The cisatracurium besilate – A short review

Akshaya N. Shetti1,*, Manju Jha Kashyap2, Pachipala Amarendra3, Rachita G. Mustilwar4

1Associate Professor, 2Professor, 3Post Graduate, 4Lecturer, 1,2,3Dept. of Anesthesiology and Critical Care, Rural Medical College 4Dept. of Periodontics and Implantology, Rural Dental College, Loni, Maharashtra, India

*Corresponding Author: Email: aksnsdr@gmail.com

Abstract
Various neuromuscular blocking agents are used in the routine anesthesia practice. Cisatracurium besilate is a nondepolarising neuromuscular blocking agent which has an intermediate duration of action. Due to the high molecular weight and high polarity the volume of distribution is low. Cisatracurium besilate undergoes Hofmann elimination which makes this as a drug of choice in organ failure patients.

Keywords: Cisatracurium, Neuromuscular blocking agent, Nondepolarizing.

Introduction
General anesthesia (GA) is commonly practiced due to various disadvantages seen with regional techniques. With the newer research molecules of anesthetic drugs and the safety margins, the GA can be conducted safely. GA has five components that are analgesia, amnesia, paralysis, hypnosis, immobility. Though achieving all the components are challenging, the use of muscle relaxant is very tricky and a thorough knowledge of the drugs before the use is very important. Muscle relaxants are used to facilitate endotracheal intubation, ensure patient immobility and improve surgical exposure along with adequate hypnosis and analgesia. Two types of neuromuscular blockers are available i.e., non-depolarizing and depolarizing. Cisatracurium is a benzyloisquinoline which was introduced for clinical use since 1995. It is a recently launched product in India with nondepolarising neuromuscular blocking property and has an intermediate duration of action.

Chemical formulation: Cisatracurium is an immediate-acting bis-benzyloisquinolinium skeletal muscle relaxant. The chemical name is cisatracurium besylate and has the molecular weight of 1243.487 g/mol. The molecular formula of cisatracurium is C_{65}H_{82}N_{2}O_{18}S_{2}. It is one of the 10 isomer of the atracurium which has the similar profile. The chemical structure is shown in Fig.1.

Pharmacodynamics: Cisatracurium is a new skeletal muscle relaxant which mainly acts on the cholinergic receptors leading to blocking of impulses which are transmitted to skeletal muscle. The onset of action and the duration of action are intermediate in nature when compared to other skeletal muscle relaxant drugs. The action is mainly reversed by the acetyl cholinesterase inhibitors like neostigmine thus antagonizing the action of cisatracurium.

Pharmacokinetics
Route of administration: Intravenous

Dosage and formulation: Injection cisatracurium besylate is available in solution formulation which is a sterile, non-pyrogenic solution provided in 5, 10 and 20 ml vials. Each ml contains 2mg of cisatracurium. Many manufacturers provide 20ml vial which is mainly for the ICU use, equivalent to 10mg/ml, intended for infusion. The single use vials contain 0.9% benzyl alcohol as a preservative. Initial dose for tracheal intubation in adults is 0.15 or 0.2 mg/kg; then 0.03 mg/kg I.V every 40 to 50 minutes. Infusion dose of 3 mcg/kg/minute can be considered for prolonged surgery. In children 0.1mg/kg as a initial dose.

Fig. 1: Chemical structure of Cistatracurium
Onset, peak and duration: Onset of action is 1-3 min and with the peak of 2-5 min and duration of action is 25-45 minutes.

Distribution: The volume of distribution is small due to relative large molecular weight and high polarity.

Metabolism & Elimination: The cisatracurium is eliminated by both biliary and urinary route. The drug undergoes Hofmann elimination which is a pH and temperature dependent process. The metabolic products are laudanosine and monoquaternary acrylate. Laudanosine is metabolized into desmethyl metabolites and gets conjugated with glucuronic acid and excreted through urine. The later undergoes into hydrolysis to form monoquaternary alcohol which intern undergoes Hofmann elimination. Approximately 77% if the drug injected undergoes Hofmann elimination which is an organ independent elimination process. The elimination half-life of cisatracurium besilate in patients with normal organ function is 25 minutes. Raise in temperature either body or room temperature will reduce the potency of cisatracurium as its metabolism is temperature and pH dependent. The increased in metabolism of Cisatracurium seen in patients having fever and prolonged action is seen in case of cardiac surgeries where hypothermia was induced. The drug should not be administered with the same line where patient is receiving warm intravenous fluids.

Special population: There is no drug dosage adjustment is required for renal failure patient receiving this drug. But it is recommended to have neuromuscular junction monitoring while receiving. The pharmacokinetics of cisatracurium differ marginally in elderly patients. Onset is also delayed in elderly due to slower bi phase equilibration. But certain studies have shown, clinically the onset time is not significantly different between the adults and elderly population.

Pregnancy & lactation: The cisatracurium metabolite laudanosine crosses the placental barrier which is about 14% of maternal blood concentrations. There are no specific studies exists on usage of this drug in patient with lactation.

Drug interaction: Synergistic effects are seen with other muscle relaxants like, atracurium, vecuronium and rocuronium.

Indications
This drug is used as a muscle relaxant for tracheal intubation during general anesthesia. It is successfully used in critical care where patient were put on mechanical ventilation that were requiring complete skeletal muscle paralysis. The dosage requirement will be higher for the patients who are on mechanical ventilation for prolonged duration. This may be due to degradation of the receptors. Thus there is a need for neuromuscular monitoring in such patients.

Contraindications: Patients with known hypersensitivity to this drug, malignant hyperthermia and neuromuscular disorders.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Cisatracurium</th>
<th>Artacurium</th>
<th>Vecuronium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Metabolite</td>
<td>Laudanosine</td>
<td>Laudanosine</td>
<td>3-desacetylvecuronium</td>
</tr>
<tr>
<td>Elimination half life</td>
<td>22 minutes</td>
<td>20 minutes</td>
<td>65-75 minutes</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Hofmann</td>
<td>Hoffman</td>
<td>By liver</td>
</tr>
<tr>
<td>Cost effectiveness (In comparison with Atracurium)</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Hypotension and bradycardia due to histamine release</td>
<td>Insignificant</td>
<td>Significant</td>
<td>Insignificant</td>
</tr>
</tbody>
</table>

Storage: The drug should be stored at 2-8°C to preserve the potency of the drug.

Safety and tolerability: This drug has been studied in patients with severer sepsis and receiving prolonged mechanical ventilation and the results showed that standard dosing of this drug may result in slower patient response with reduced effect. The author recommended to use larger dose to overcome the delayed effect. The accumulation of metabolite laudanosine after prolonged infusion of cisatracurium causes seizures in animals. This may not be true with the humans as reported earlier. Various studies have shown insignificant cardiovascular and cerebral parameter changes when given bolus and maintenance dose. This drug is preferred in patients with instability of hemodynamic. Cisatracurium when compared with the vecuronium in coronary artery disease patients the author found that there was a clinically insignificant change in the hemodynamics. There is no systemic or cutaneous histamine release when the drug injected in either bolus or as continuous infusion method.

Conclusion
Cisatracurium is a newer intermediate onset and duration skeletal muscle relaxant. This drug can be safely be used in hepatorenal impairment. Like other muscle relaxants it can be used in both elective surgical procedures under general anesthesia and in patients.
who receive the prolonged controlled mechanical ventilation. The only concern could be the cost effectiveness in comparison with available skeletal muscle relaxants.

References